Prosthetics is a hot topic, from debates on ethical implications to the amazing possibilities. It is also the focus of many research endeavors, offering researchers the perfect blend of creating meaningful impact, pushing the boundaries of scientific knowledge, and working with tangible objects that we can see and hold. Compared with the human body, prostheses are a poor substitute, but there is also much promise from technologies being developed in related fields, such as smart phones, autonomous cars, and bipedal robots.

This talk will cover some of the game-changing paradigm shifts happening in the field at the moment, ranging from surgical, engineering, and therapeutic, and ultimately understanding how the user’s behavior itself is integral to optimizing the system (computational motor control).

Jon Sensinger, Ph.D., is the associate director of the Institute of Biomedical Engineering and an associate professor in the Electrical Engineering department at the University of New Brunswick. He is also a co-founder and partner of Coapt LLC, a company that sells controllers for prostheses. Trained as a clinical prosthetist, his translational research focuses on the design, control, and human interaction of prostheses and exoskeletons. His research interests are focused on developing computational motor control models of how humans perceive their control of prosthetic devices, and the design and control of robotic prosthetic legs and exoskeletons for use in rehabilitation.